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Summary. We present a highly adaptive hierarchical representation of the topology of func-
tions def ned over two-manifold domains. Guided by the theory of Morse-Smale complexes,
we encode dependencies between cancellations of critical points using two independent struc-
tures: a traditional mesh hierarchy to store connectivity information and a new structure called
cancellation trees to encode the conf guration of critical points. Cancellation trees provide a
powerful method to increase adaptivity while using a simple, easy-to-implement data struc-
ture. The resulting hierarchy is signif cantly more f exible than the one previously reported [4].
In particular, the resulting hierarchy is guaranteed to be of logarithmic height.

1 Introduction

Topology-based methods used for visualization and analysis of scientif c data are
becoming increasingly popular. Their main advantage lies in the capability to provide
a concise description of the overall structure of a scientif c data set. Subtle features
can easily be missed when using “traditional” visualization methods like volume
rendering or iso-contouring, unless “correct” transfer functions and isovalues are
chosen. On the other hand, the presence of a large number of small features creates
a “noisy visualization,” in which larger features can be overlooked. By visualizing
topology directly, one can guarantee that no feature is missed. Furthermore, one can
use sound mathematical principles to simplify a topological structure. The topology
of functions is also often used for feature detection and segmentation (e.g., in surface
segmentation based on curvature).

However, for topology-based data analysis one needs f exible, hierarchical mod-
els able to adaptively remove noise or features not relevant for a particular segmenta-
tion. In practice, the simplif cation/ref nement should be fast (preferably interactive)
and highly adaptive in order to be useful in a large variety of situations. Requir-
ing interactivity inadvertently leads to the use of hierarchical encodings rather than
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simplif cation schemes. Hierarchical models often reduce the adaptivity of a repre-
sentation to gain the ability to perform incremental changes for varying queries.

We address the need for adaptive topology-based data exploration by improving
signif cantly the topological hierarchy proposed in [4]. Creating two largely inde-
pendent hierarchies, we show how one can remove many of the dependencies in the
original hierarchy, making the structure simpler, more compact, and more adaptive
than the original one.

1.1 Related Work

The topological structure of a scalar f eld can be described partially by its contour
tree [17, 5, 18], which describes the relations between the connected components
of its level sets. This structure provides a user with a compact representation of the
topology [1] and can be used to accelerate the computation of isosurfaces [24]. How-
ever, the contour tree provides little information about the embedding of the level
sets and therefore remains somewhat abstract. Morse theory [16, 15], on the other
hand, provides methods to analyze the complete topology of a function over a man-
ifold as well as its embedding. Early approaches for the bivariate case are provided
in [6, 14, 19]. More recently, the Morse-Smale complex was introduced by Edels-
brunner et al. [9, 8] as a description of the topology of scalar-valued functions over
two- and three-dimensional manifolds. Applications of this theory vary from implicit
geometry modeling [21] to shape description [13]. Related concepts are also used in
f ow visualization. Helman and Hesselink [12] showed how to f nd and classify criti-
cal points in f ow f elds and propose a structure similar to the Morse-Smale complex
for vector f elds. Later, methods to analyze and simplify this complex were proposed
by de Leeuw and van Liere [7] and Tricoche et al. [22, 23].

The f rst multi-resolution encoding of a Morse-Smale complex we are aware of
was proposed by Pfaltz [20], which has been improved and extended by Edelsbrunner
et al. [9] and Bremer et al. [3, 4]. More recent hierarchical structures are based on the
concept of persistence[10], which relates the difference in function value of critical
point pairs to the importance of a topological feature. Given a Morse-Smale complex,
we

1. provide an improved hierarchical encoding of the Morse-Smale complex;
2. prove that the resulting hierarchy is of logarithmic height; and
3. demonstrate our methods for various data sets.

We f rst review necessary concepts from Morse theory and the construction of a
Morse-Smale complex (Section 2). In Section 3, we describe cancellation trees and
the resulting hierarchy in Section 4. We conclude with results and possibilities for
future research (Section 5).
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2 Morse-Smale Complex

We base our algorithms on intuitions derived from the study of smooth functions.
We review key aspects from Morse theory [16, 15] for smooth functions and discuss
how these can be used in the piecewise linear case.

2.1 Morse Theory

Given a smooth function f : M → R, a point a∈ M is called critical when its gra-
dient 5 f (a) = (δ f/δx,δ f/δy) vanishes; it is called regular otherwise. For two-
manifolds, (non-degenerate) critical points are maxima ( f decreases in all direc-
tions), minima ( f increases in all directions), or saddles ( f switches between de-
creasing and increasing four times around the point). Using a local coordinate frame
at a, we compute the Hessian Hof f , which is the matrix of second partial deriva-
tives. If H is non-singular we can construct a local coordinate system such that f has
the form f (x1,x2) = f (a)± x2

1 ± x2
2 in a neighborhood of a. The number of minus

signs is the indexof a and distinguishes the different types of critical points: minima
have index 0, saddles have index 1, and maxima have index 2.

At any regular point, the gradient (vector) is non-zero, and when we follow the
gradient we trace out an integral line, which starts at a critical point and ends at a
critical point, while technically not containing either of them. Since f is smooth, two
integral lines are either disjoint or the same. The descending manifold D(a) of a crit-
ical point a is the set of points that f ow toward a. More formally, it is the union of a
and all integral lines that end at a. The collection of descending manifolds is a com-
plex in the sense that the boundary of a cell is the union of lower-dimensional cells.
Symmetrically, we def ne the ascending manifold A(a) of a as the union of a and all
integral lines that start at a. If no integral line starts and ends at a saddle, see [9], we
can overlay these two complexes and obtain what we call the Morse-Smale complex
of f . Its vertices are the vertices of the two overlayed complexes, which are the min-
ima, maxima, and saddles of f . Its cells are four-sided regions bounded by parts of
integral lines between saddles and extrema. An example is shown in Figure 1.

minimum
maximum
saddle
ascending path
descending path

Fig. 1. Morse-Smale complex.

Using the insight gained from smooth Morse theory when applied to piecewise
linear functions, we follow the concepts described in [3].
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We follow the concepts described in [3] to apply the concepts of smooth Morse
theory to piecewise linear functions. Critical points are identif ed and classif ed based
on their local neighborhood, see [2, 9]. If all vertices that are edge-connected to a
point u have function values below that of u, we call it a maximum; if all are above
u, then we call it a minimum etc., see Figure 2. In general, there can exist saddles
with high multiplicity that we split into simple ones, as shown on the far right in
Figure 2.

splitting of two−fold saddleminimum saddle maximumregular point

v v v v v
v

Fig. 2. Classif cation of a vertex v based on relative height of its edge-connected neighbors,
where light vertices/edges mark higher neighbors and solid vertices/edges lower neighbors.

2.2 Persistence

As a numerical measure of the importance of critical points we def ne pairs of criti-
cal points and use the absolute difference between their height/function values. The
underlying intuition is the following: We imagine sweeping the two-manifold M in
the direction of increasing height (w.r.t. the scalar f eld value.) The topology of the
part of M below the sweep line changes whenever we add a critical vertex, and it
remains unchanged whenever we add a regular vertex. Each change either creates
a component, destroysa component, or changes its genus. We pair a vertex v that
creates a component with the vertex u that destroys the component. The persistence
of u and of v is the “delay” between the two events: p = f (v)− f (u), see [10].

2.3 Construction

In practice, we construct the Morse-Smale complex by successively computing its
edges, starting from the saddles, see [3]. Starting from each saddle, we compute two
lines of steepest ascent and two lines of steepest descent connecting the saddle to two
maxima and two minima. We call these lines ascendingor descending paths. Two
paths in the same direction (ascending or descending) can merge; two paths with dif-
ferent direction must remain separate. Once two paths have been merged they never
split. Following these rules, we are guaranteed to produce a non-degenerate Morse-
Smale complex. A more detailed analysis can be found in [3]. Having computed all
paths, we partition the surface into four-sided regions forming the cells of the Morse-
Smale complex. Specif cally, we grow each quadrangle from a triangle incident to a
saddle without ever crossing a path.
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2.4 Simplification

To simplify an Morse-Smale complex locally we use a cancellationthat eliminates
two critical points. The inverse operation to ref ne the complex is called an anti-
cancellation. Only two adjacent critical points in an Morse-Smale complex can be
canceled. The possible conf gurations are a minimum and a saddle or a saddle and a
maximum. Since the two cases are symmetric we limit our discussion to the second
case, which is illustrated in Figure 3.

(a) (b)

Fig. 3. Graph of a function before (a) and after (b) cancellation of pair u,v.

Only if v is a simple saddle adjacent to two distinct maxima u, w with f (w) >
f (v) the pair u, v can be canceled. In particular, a cancellation or anti-cancellation
must always maintain a valid Morse-Smale complex. An Morse-Smale complex is
called valid, if all cells have four (not necessarily distinct) corners and every path
between a saddle and maximum/minimum is ascending/descending. Alternatively,
an adaptively ref ned Morse-Smale complex is valid if it can be created from the
highest resolution one using a sequence of cancellations.

3 Cancellation Forest

The information an Morse-Smale complex provides can be separated into the critical
points and their connectivity. The critical points information includes position, type,
and function value and we refer to this as critical point configuration. The connectiv-
ity encodes which paths (edges) def ne a Morse cell and the neighboring information
between cells. As with most mesh encoding schemes the critical point conf guration
provides most (but not all) information about the Morse-Smale complex. Especially
during simplif cation, the connectivity of the Morse-Smale complex can often be in-
ferred from the critical point conf guration. For example, in Figure 3 after u and v
have been removed all saddles that were connected to u are now connected to w.

When encoding a cancellation the separation between critical point conf guration
and connectivity is very intuitive. The top row of Figure 4 shows three consecutive
cancellations C1, C2, and C3 of minima. To reverse any of these cancellations one
f rst needs to know how the connectivity of the Morse-Smale complex changes. For
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example, in Figure 4(d) m4 must be created on the left of m3 (not on its right.)
This information is provided by the neighborhood relations between Morse cells, see
Section 4.

One important aspect when encoding (anti-)cancellations is whether the opera-
tions can be performed out of order. The less ordered dependent the encoding is the
more f exible the resulting hierarchy becomes. However, when reversing the order of
anti-cancellations the connectivity alone does not uniquely encode a Morse-Smale
complex. For example, starting from Figure 4(d) and performing C1−1 before C2−1

seems to result in the structure of Figure 4(e). Nevertheless, the Morse-Smale com-
plex drawn in (f) has the same connectivity but a different critical point conf guration.

C1 C2

C3

m4

s1

m3s2

m0

s3 m4
s4

s0

m3

m1 m0

m2m2
m3

m0

m4
s4

s3 s2

s1

s4
s3 s2

(a) (b) (c)

C1
−1

C1
−1

−1
C3

s0

s3
s2

s3
s2m3

m0

m3

m0
m1

s3
s2m3

m2

m0
s0

(d) (e) (f)

Fig. 4. Morse-Smale complex (a) shown after three successive cancellations (b), (c), and (d).
The conf gurations in (e) and (f) have the same connectivity but a different critical point con-
f guration.

The straightforward solution to encoding the critical point conf guration is to link
it directly to each cancellation. If a cancellation removed the critical point pair u,v
then the corresponding anti-cancellation would introduce u,v. However, this imposes
restrictions on the order of cancellations and anti-cancellations. Figure 5 shows the
example of Figure 4 enhanced by labeling some critical points with function val-
ues. In this situation the conf guration after reversing C1 must be the one shown in
Figure 5(c) and 4(f), respectively. The saddle s2 cannot be connected to m0 since
the resulting path could not be descending from saddle to minimum. However, C1
removed s0,m1 and linking the critical point conf guration directly to each cancella-
tion would create an invalid Morse-Smale complex. The algorithm proposed in [4]
avoids these complications by imposing additional restrictions on the order of oper-
ations, see Section 4.
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(a) (b) (c)

Fig. 5. Morse-Smale complex of Figure 4 with function values. (a) Original complex. (b)
Invalid critical point conf guration (the path marked in red cannot be descending.) (c) Valid
critical point conf guration requires anti-cancellation C1−1 to create m2 rather than m1.

We propose a different strategy that allows us to store connectivity and critical
point conf guration independently of each other using a simple data structure. The
core idea is to view the cancellation shown in Figure 3 not as removing u and v but
as merging the triple u, v, and w into w. After a sequence of cancellations we think
of every extremum as the representativeof itself plus all extrema merged with it.
Maxima only merge with maxima and minima only with minima. We keep track of
these merges by creating a graph for every extremum. Initially, each extremum is
represented by itself as a graph with a single node. During each cancellation an arc
is added between the two extrema that were connected to the corresponding saddle
in the initial Morse-Smale complex. Notice, that these two extrema are not necessar-
ily the ones involved in the current cancellation, which merges their representatives.
Since no extremum can merge with itself these graphs are trees, called cancella-
tion treeswhich form the cancellation forest. Figure 6 shows several cancellations
and the resulting trees. Figure 13(a) shows the cancellation trees of a typical terrain
data set. Notice, that the cancellation trees provide a very intuitive description of the
orientation and general shape of the dominate ridges and valleys in the data.

Even though the data structure used for cancellation trees is simple, it is also
very powerful due to two key properties. First, recall that during a cancellation the
higher maximum or lower minimum always prevails in the Morse-Smale complex.
This fact implies that, for example, the representative of a tree of maxima is always
the highest node of the tree. Second, arcs of a cancellation tree correspond to saddles
and/or cancellations. In fact, given a cancellation forest created, for example, during
an earlier simplif cation, it is possible to derive a (nearly) complete Morse-Smale
complex based only on a set of saddles. Assume one is given a highly simplif ed
Morse-Smale complex and the corresponding cancellation forest; Furthermore, as-
sume a ref nement of the Morse-Smale complex is described by a set of saddles
S= {s0, . . . ,sn} that must appear in the ref ned complex, for example all saddles
within a view frustrum. First, one removes all arcs corresponding to a saddle in S
from the cancellation forest resulting in another forest with more but smaller trees.
Subsequently, one can reconstruct the Morse-Smale complex in the following man-
ner: Each saddle si was initially connected to two maxima M0,M1 and two minima
m0,m1. All of these extrema are part of a tree, and the saddle is connected to the four
representatives of these trees. This def nes the adaptive Morse-Smale complex to the
level of the embedding of the paths. The saddles are given, the remaining critical
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M

Fig. 6. Example of cancellation trees of maxima resulting from multiple cancellations. (Top)
Morse-Smale complex with some cancellations indicated in red. (Bottom) Corresponding can-
cellation trees of all maxima. Note, that arcs are added between extrema incident to the same
saddle in the initial complex not the extrema merged by the current cancellation.

points are the representatives of the cancellation trees, and the paths embedding can
be derived from concatenating original paths.

Fig. 7. Strangulation where two
Morse cells have the same corners.

Nevertheless, the connectivity between Morse
cells is not uniquely def ned by the construction
described above. This is due to the fact that in
an Morse-Smale complex paths are not uniquely
def ned by their end points, see Figure 7. As a re-
sult, Morse cells are not identif ed by their cor-
ners and the connectivity must still be stored ex-
plicitly. Section 4 describes how the connectiv-
ity as well as the conf guration of saddles can be
stored hierarchically.

In general, a cancellation tree can be split anywhere at any time. As a result,
the search for the representative of a subtree does not map to a union-f nd approach
traditionally employed in similar situations. Therefore, maintaining the cancellation
forest involves a linear search during an anti-cancellation and is a constant-time op-
eration during a cancellation. While more sophisticated structures are possible our
experiments suggest that cancellation trees have an overall low branching factor. This
would likely diminishes any advantage of more complicated structures and would
make implementation more diff cult.
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4 Hierarchy

Using cancellation trees to maintain the critical point conf guration allows us to cre-
ate a mesh hierarchy geared completely towards connectivity. The main objective is
to construct a hierarchy that supports as many different conf gurations as possible.
Following traditional triangle mesh hierarchies, (anti-)cancellations are stored in a
dependency graph representing a partial order among operations. All conf gurations
that can be created by observing the partial order should result in a valid Morse-
Smale complex.

4.1 Hierarchy Construction

Following the approach discussed in [4], we split each Morse cell into two Morse
trianglesby introducing the diagonal connecting the minimum to the maximum into
the complex. As a result, the neighborhood around a saddle then consists of four tri-
angles that form the diamondaround the saddle, as indicated in grey in Figure 8(a).
Each cancellation removes one diamond from the Morse-Smale complex. We create

wvu w

(a) (b)

Fig. 8. Morse-Smale complex corresponding to Figure 3 (a) before and (b) after cancellation
of pair u,v. Diagonals indicating diamonds are shown as dotted lines.

a hierarchy in a bottom-up fashion by successively canceling critical points, see Fig-
ure 9 for an example. Two cancellations are called independentif it is irrelevant in
what order they are performed and dependentotherwise. The extended dependency
graphcontains a node for every cancellation and an arc between dependent cancella-
tions. The dependency graphis derived from the extended one using path compres-
sion. The heightof the dependency graph is def ned as the maximal distance from a
root to a leaf. In practice, one is interested in constructing a shallow graph with few
edges since this implies the possibility of a large number of different conf gurations.

Clearly, the def nition of dependencies between cancellations determines the
shape of the dependency graph. In [4], the region of interferenceof the cancellation in
Figure 8 is def ned as all Morse cells incident to either u, v, or w. Two cancellations
are def ned as dependent if their regions of interference have a (true) intersection.
This large region of interference is necessary to avoid the problems discussed in
Section 3. Given the large region of interference, storing the hierarchy is straightfor-
ward. Each cancellation replaces Morse cells around three critical points by Morse
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cells around the remaining one. The boundary of the region does not change and the
dependencies ensure that a (anti-)cancellation is only performed if the Morse-Smale
complex is locally identical to the one encountered during construction. This can
be viewed as a special case of the concepts described for general multi-resolution
structures described, for example, by de Floriani et al. [11]. An example of several
cancellations and the resulting dependency graphs using the old hierarchy is shown in
Figure 9. Due to the large regions of interference the f nal dependency graph (lower
right corner) is a line allowing no adaptations beyond the ones encountered during
construction.

C1
C1

C3
C1

C3

C2

C4

C1

C2

C1

C4
C3

C2 C2

Fig. 9. Hierarchy construction as described in [4]. Cancellations are indicated by arrows, the
corresponding region of interference is shaded in grey, and regions of overlap with previous
cancellations are shaded in red. The corresponding dependency graphs are shown next to the
Morse-Smale complexes. After four cancellations the dependency graph is a line.

Using cancellation trees one can ignore the conf guration of minima and max-
ima, requiring us to encode only the connectivity and saddle conf guration. Since
each cancellation removes the diamond around a saddle it is natural to link the sad-
dle information directly to a diamond. Therefore, if we can store the diamond in-
formation (the connectivity) hierarchically, cancellation trees provide the remaining
information.

To store the connectivity information we use the concepts from [11] but now
with a signif cantly smaller region of interference. Each cancellation removes one
diamond replacing eight triangles around a vertex by four. An anti-cancellation re-
introduces a diamond replacing four triangles by eight, introducing two vertices.
Some possible conf gurations are shown in Figure 10. The cancellation of a diamond
changes a reduced Morse-Smale complex only for the neighboring (edge-connected)
diamonds. Therefore, the region of interference of a cancellation is def ned as the
corresponding diamond plus its edge-connected neighbors. The smaller regions of
interference produce a smaller set of dependencies. In fact, the number of ances-
tors and the number of children of each node in the dependency graph is bounded
(assuming path compression). Each diamond has at most four edge-connected neigh-
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Fig. 10.Three examples for encoding the connectivity during cancellations. The triangulation
before (top) and after (bottom) the cancellation of the diamond a, b, c, d is shown. The middle
row shows how the change in neighborhood structure for an (anti-)cancellation is encoded as
a list of triangle pairs (-1 indicating a boundary edge).

bors and therefore, a node cannot have more than four children. Canceling a diamond
merges its four neighbors into two. As a result, a node can have no more than two
ancestors. Figure 11 shows the example of Figure 9 using cancellation trees.

We create a hierarchy by removing diamonds from the highest-resolution Morse-
Smale complex in “batches” of independent cancellations. However, this strategy
can result in cancellations of high persistence to be dependent on cancellations with
much lower persistence, which is undesirable for most applications. Therefore, we
limit the batches such that the largest persistence in a batch is not larger than twice
the maximal persistence of the previous batch. The resulting hierarchy performs sig-
nif cantly better than the unrestricted one in terms of the error cause for a given
number of critical points and shows practically no difference in f exibility. However,
theoretically, the restricted algorithm can create a hierarchy of linear height. Without
this restriction, it is guaranteed that each batch contains about one quarter of the re-
maining diamonds in the complex and therefore the algorithm creates a hierarchy of
logarithmic height.
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Fig. 11.The top two rows show the example of Figure 9 using cancellation trees to encode the
hierarchy. The regions of interference are shaded in grey, and the corresponding cancellation
trees are drawn on the right side of each f gure with the representative marked in red. Using
the reduced Morse-Smale complex all cancellations are independent. The bottom row shows
the complex after the anti-cancellation of C1 (left) and C2 (right). Note that C1−1 correctly
creates M1 rather than M0 (M1 is higher than M0).

5 Results

To compare the new hierarchy with the one proposed in [4] we applied both strategies
to a 1201-by-1201 single-byte integer value terrain data set of the Grand Canyon.
Figure 16 shows a rendering (a) and the initial Morse-Smale complex (b) of the
Grand Canyon data set with 11620 critical points. We assess quality via a f y-over
comparing the adaptivity of the cell-based hierarchy with the one using cancellation
trees. A narrow view-frustum is def ned where the topology is ref ned to the highest
resolution. Outside the given view-frustum only dependent topology is used. Fig-
ures 17 and 18 show two frames of the f y-over for two distinct stages of the f y-over
path.

Figure 12 shows the number of critical points in the adaptive Morse-Smale com-
plex during the f y-over for both methods used for hierarchy construction. The hi-
erarchy using cancellation trees is clearly superior to the original encoding. One
explanation for the large differences in quality is the presence of high-valency ex-
trema in the Morse-Smale complex. Often, data sets (especially terrains) are biased
to contain signif cantly more maxima than minima (or the reverse), which results in
some extrema of the Morse-Smale complex having high valency values. Using the
original large region of interference, the hierarchy around a high-valency extremum
degenerates into a linear sequence. The smaller region of interference proposed in
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Fig. 12.Number of critical points used during a f y-over (Grand Canyon data set.)

this paper, however, is based on saddles which always have valence four. Therefore,
the shape of the hierarchy remains largely unaffected by high valency extrema.

The adaptive ref nement and display of topology is useful for many areas. Fig-
ure 15 shows the oil pressure of an underground oil reservoir. The f gure shows an
isosurface of water saturation, pseudo-colored by oil pressure. The linear color map
used in Figure 15 provides little structural information. However, the seven oil ex-
traction sites are visible as local minima in the simplif ed Morse-Smale complex.

Figure 13(b) shows a rendering of the Yakima terrain data set consisting of
1201×1201 single-byte integer height values. Figure 14 shows the corresponding
Morse-Smale complex with 17691 critical points and the same complex ref ned to
preserve only features below a function value of 0.14 (with function values scaled
to [0,1]) using 8063 critical points. The density of the Morse-Smale complex shows
how the region around the canyons remains highly ref ned.

One disadvantage of the new technique is that the hierarchy is so f exible that
it becomes impossible to precompute function values corresponding to all possible
topological ref nements. However, for any topological ref nement we can compute a
function with the given topology using the concepts of [4]. The general idea of this
computation is indicated in Figure 8. Canceling the maximum u with the saddle v
requires us to lower the function within a region around u and to raise the function
along the path u−v−w.

6 Conclusions and Future Research

We have improved our original results discussed in [4] signif cantly in several differ-
ent ways, moving towards the practical application of topology for data visualization
and analysis. Using cancellation trees, the hierarchy is smaller, more adaptable, and
supports the use of larger, more complicated Morse-Smale complexes. Furthermore,
cancellation trees are easy to implement and to maintain during ref nement. Cur-
rently, we only display the adapted topology, not the corresponding adapted function
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interactively. We plan to develop new techniques computing high-quality topological
approximation on-the-f y.
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Fig. 13. (Left) Typical cancellation trees of a terrain. Maxima are shown in red, minima in
blue, and arcs in green. Note the overall low branching factor. (Right) Rendering of original
Yakima data set.
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Fig. 14.(Left) Original Morse-Smale complex of the Yakima data set (17691 critical points);
(right) adaptively ref ned Morse-Smale complex, where only features below function value of
0.14 are preserved (8063 critical points).

Fig. 15.Pseudo-colored rendering and simplif ed Morse-Smale complex of oil-pressure data
set.
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Fig. 16.Rendering of Grand Canyon data set; (b) original Morse-Smale complex of (a) using
11620 critical points (minima shown in blue, maxima in red, and saddles in green.)
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Fig. 17.Global view of a f y-over of Grand Canyon data set. Inside the local view frustum (yel-
low) the f nest resolution topology is shown on the outside only dependent topology is used.
(Top) The results of the hierarchy in [4]; (bottom) ref nement using the improved hierarchy
introduced in this paper.
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Fig. 18.Another frame of the f y-over of the Grand Canyon data set. (Top) Using the original
hierarchy; (bottom) using the cancellatio forest.


